Search results for "Carbon stock"
showing 10 items of 26 documents
Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop…
2018
This 2-year study aimed to verify whether the continuous application of no tillage (NT) for over 20 years, in comparison with conventional tillage (CT), affects nitrous oxide (NO) and ammonia (NH) emissions from a Vertisol and, if so, whether such an effect varies with crop sequence (continuous wheat, WW and wheat after faba bean, FW). To shed light on the mechanisms involved in determining N-gas emissions, soil bulk density, water filled pore space (WFPS), some carbon (C) and nitrogen (N) pools, denitrifying enzyme activity (DEA), and nitrous oxide reductase gene abundance (nosZ gene) were also assessed at 0–15 and 15–30 cm soil depth. Tillage system had no significant effect on total NH e…
Agricultural management affects the response of soil bacterial community structure and respiration to water-stress
2013
International audience; Soil microorganisms are responsible for organic matter decomposition processes that regulate soil carbon storage and mineralisation to CO2. Climate change is predicted to increase the frequency of drought events, with uncertain consequences for soil microbial communities. In this study we tested the hypothesis that agricultural management used to enhance soil carbon stocks would increase the stability of microbial community structure and activity in response to water-stress. Soil was sampled from a long-term field trial with three soil carbon management systems and was used in a laboratory study of the effect of a dry wet cycle on organic C mineralisation and microbi…
Soil carbon accumulation after agricultural abandonment. A Mediterranean case study.
2011
In the last decades, in Europe large agricultural areas have been abandoned. In absence of disturbance factors, renaturation of these areas is rapid due to secondary succession of vegetation communities. In the Mediterranean region, in the last years have been conducted studies on soil carbon accumulation after agricultural abandonment. Soil has to be regarded as the most considerable carbon (C) sink on a global level. CO2 emission compensation is guaranteed also by C uptake by plants and by organic matter accumulation in soils. The present study analyzes organic carbon stock in some soils of Southern Italy, in the Madonie Mountains in Sicily, where large areas are subject to secondary succ…
Long-term carbon stock recovery in a neotropical-logged forest
2019
AbstractThis article assesses the effect of different logging levels on loss of above-ground biomass and the contribution of different ecological groups of species in the long-term recovery of C st...
Describing urban soils through a faceted system ensures more informed decision-making
2016
Urban areas are increasing worldwide at a dramatic rate and their soils definitely deserve more attention than they have received in the past. In urban environments, soils potentially provide the same ecosystem services as in rural and wild environments, although in some cases they are depleted of their basic functions, such as when they lose their productive and filtering capacities because of sealing, and become mere supports for infrastructures. In other cases, soils of urban areas acquire new functions that are unique to these environments. Current soil classifications fail to effectively account for the complexity of urban soils and the information that is required for their management…
Geographic Information System of Primary Carbon Deposit of Mangrove Forest in Merauke District, Indonesia
2020
Emission factors with increasing carbon dioxide (CO2) originating from various human activities are one of the causes of global climate change. The mangrove forest is a type of plant that has a great ability to absorb carbon in the atmosphere and store it in biomass through photosynthesis. Merauke Regency has 20 separate parts based on regional administration, but primary Mangrove forests are only found in ten regions (district). The results of research carried out using geographic information systems (GIS) in processing primary Mangrove forest data based on 2016 land cover map data in Merauke district, the area of primary mangrove forest reaches 184.402 ha, which is spread in various regio…
Development of a Model to Estimate the Risk of Emission of Greenhouse Gases from Forest Fires
2022
27 Pág.
Spatial Autocorrelation in Econometric Land Use Models: An Overview
2021
International audience; This chapter provides an overview of the literature on econometric land use models including spatial autocorrelation. These models are useful to analyze the determinants of land use changes and to study their implications for the environment (carbon stocks, water quality, biodiversity, ecosystem services). Recent methodological advances in spatial econometrics have improved the quality of econometric models allowing them to identify more precisely the determinants of land use changes and make more accurate land use predictions. We review the current state of the literature on studies which account explicitly for spatial autocorrelation in econometric land use models …
Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw
2020
Significance Over many millennia, northern peatlands have accumulated large amounts of carbon and nitrogen, thus cooling the global climate. Over shorter timescales, peatland disturbances can trigger losses of peat and release of greenhouses gases. Despite their importance to the global climate, peatlands remain poorly mapped, and the vulnerability of permafrost peatlands to warming is uncertain. This study compiles over 7,000 field observations to present a data-driven map of northern peatlands and their carbon and nitrogen stocks. We use these maps to model the impact of permafrost thaw on peatlands and find that warming will likely shift the greenhouse gas balance of northern peatlands. …
DRIFTS Sensor: Soil Carbon Validation at Large Scale (Pantelleria, Italy)
2013
A fast and accurate measurement of soil carbon is needed in current scientific issues. Today there are many sensors suitable for these purposes, but choosing the appropriate sensor depends on the spatial scale at which the studies are conducted. There are few detailed studies that validate these types of measures allowing their immediate use. Here it is validated the quick use of a sensor in execution at Pantelleria, chosen for size, use and variability of the parameter measured, to give an operational tool for carbon stocks studies. The DRIFT sensor used here has been validated in the first 60 cm of the soil of the whole island, and it has shown predictivity higher than 90%.